

http://ioerc.mk

GIMP application
Subject: Math (III grade)
Topic: Equation of a circle

Creator: Nada Sirmevska
Subject: Math (III grade)
Topic: Equation of a circle
Level: High school
Language: English
Type of material: Instructions for working with new topic
Material format: PDF document

Abstract

In plane geometry, a circle is defined as the set of all points which are equidistant from a fixed point. In the coordinate plane, a circle can be represented by an equation which is the relation between the points on the circle and the fixed elements, i.e. the center and the radius of the circle.

Standard equation of a circle

Theorem: In the coordinate plane, the equation of a circle with center $\mathrm{C}(\mathrm{a}, \mathrm{b})$ and radius r is $(x-a)^{2}+(y-b)^{2}=r^{2}$.

Proof: Let $\mathrm{P}(\mathrm{x}, \mathrm{y})$ be any point on the circle, $C(a, b)$ be the center and r be the radius of the circle. Since $r=C P$, by using the distance formula we can write
$C P=\sqrt{(x-a)^{2}+(y-b)^{2}}=r$. By taking the square of both sides of the equation, we get $(x-a)^{2}+(y-b)^{2}=r^{2}$. This is the standard equation of a circle.

Example 1: Write the equation of the circle with center $\mathrm{C}(-3,2)$ and radius $\mathrm{r}=5$.
Solution: $\mathrm{C}(\mathrm{a}, \mathrm{b})=\mathrm{C}(-3,2)$ and $\mathrm{r}=5$. The equation of the circle is $(x-(-3))^{2}+(y-2)^{2}=5^{2}$, i.e. $(x+3)^{2}+(y-2)^{2}=25$. This is the equation of the circle.

Erasmus+

http://ioerc.mk

GIMP application
Subject: Math (III grade)
Topic: Equation of a circle

Example 2; Find the center and radius of the circle $\left(x-\frac{2}{3}\right)^{2}+(y+1)^{2}=\frac{1}{4}$.

Solution: If we compare the equations
$(x-a)^{2}+(y-b)^{2}=r^{2}$ and $\left(x-\frac{2}{3}\right)^{2}+(y+1)^{2}=\frac{1}{4}$ we can see that $\mathrm{C}(\mathrm{a}, \mathrm{b})=\left(\frac{2}{3},-1\right)$ and $\mathrm{r}=\frac{1}{2}$.

Remark:

1. The equation of a circle with center at the origin $O(0,0)$ and radius r is $x^{2}+y^{2}=r^{2}$.
2. The equation of a circle with center on the x -axis and radius r is
$(x-a)^{2}+y^{2}=r^{2}$.
3. The equation of a circle with center on the y-axis and radius r is $x^{2}+(y-b)^{2}=r^{2}$.

Note: A circle whose center is at the origin is called a central circle.

General equation of a circle

We have seen that the standard equation of a circle with center $C(a, b)$ and radius r is

$$
(x-a)^{2}+(y-b)^{2}=r^{2} .
$$

By expanding this equation we obtain

$$
\begin{align*}
x^{2}-2 a x+a^{2}+y^{2}-2 b y+b^{2} & =r^{2} \\
x^{2}+y^{2}-2 a x-2 b y+a^{2}+b^{2}-r^{2} & =0 \tag{1}
\end{align*}
$$

Now, let us take $\mathrm{D}=-2 \mathrm{a}, \mathrm{E}=-2 \mathrm{~b}$, and $\mathrm{F}=a^{2}+b^{2}-r^{2}$ and substitute in (1).
We find $x^{2}+y^{2}+D x+E y+F=0$.
Definition: The equation $x^{2}+y^{2}+D x+E y+F=0$ where $\mathrm{D}=-2 \mathrm{a}, \mathrm{E}=-2 \mathrm{~b}$, and $\mathrm{F}=a^{2}+b^{2}-r^{2}$ is called the general equation of a circle.

Remark: The general equation of a circle gives the following properties.

1. $\left.\begin{array}{rl}D & =-2 a \Rightarrow a=-\frac{D}{2} \\ E & =-2 b \Rightarrow b=-\frac{E}{2}\end{array}\right\}$ the center $\mathrm{C}(\mathrm{a}, \mathrm{b})=\mathrm{C}\left(-\frac{D}{2},-\frac{E}{2}\right)$.
2. $\mathrm{F}=a^{2}+b^{2}-r^{2} \Longrightarrow \mathrm{r}=\sqrt{a^{2}+b^{2}-F}=\sqrt{\frac{D^{2}}{4}+\frac{E^{2}}{4}-F}$ so the radius

$$
\mathrm{r}=\frac{1}{2} \sqrt{D^{2}+E^{2}-4 F} .
$$

Example 3: Find the general equation of the circle with center $\mathrm{C}(-2,3)$ and radius $\mathrm{r}=5$.
Solution: The general equation of the circle is $x^{2}+y^{2}+D x+E y+F=0$ where $\mathrm{D}=-2 \mathrm{a}$, $\mathrm{E}=-2 \mathrm{~b}$, and $\mathrm{F}=a^{2}+b^{2}-r^{2}$, so $\mathrm{D}=-2 \cdot(-2)=4, \mathrm{E}=-2 \cdot 3=-6$ and $\mathrm{F}=(-2)^{2}+3^{2}-5^{2}=-12$. So the equation is $x^{2}+y^{2}+4 x-6 y-12=0$

